New Mobility Weekly New Mobility Live

Xtalic introduces materials to reduce EV charger connector wear by 40 times

Xtalic Corporation, a provider of nano-scale metal alloys and coatings, has announced that it has entered the electric vehicle market with products that extend the life of connectors in electric battery chargers by up to 40 times.

“As more electric-powered vehicles take to the highways, the life expectancy of their battery charging interfaces are becoming critical,” said Tom Clay, Xtalic’s chief executive officer. “Extending the lifecycle of the charger’s connector contacts has become an important customer satisfaction issue for electric vehicle manufacturers.”

Xtalic has applied its Xtronic and Luna nano-structured alloys to lengthen the service lives of electric vehicle charger connectors. Traditional connector contacts employ a silver-over-nickel-over-copper construction that wears through after 250 charge cycles. Xtalic replaces these layers with its materials to significantly enhance the connectors’ hardness, durability, and corrosion resistance. The Xtalic alloys have achieved up to 10,000 charge cycles in high normal force applications.

Xtalic products also can operate at 150° C or higher, temperatures that may cause conventional materials to lose critical properties required for safe operation. All Xtalic materials are stable at high temperatures due to a carefully engineered crystal structure.

Connector companies and OEM’s are currently testing and qualifying the Xtalic materials, and the company expects to see them incorporated in the next generation of electric vehicles.

Xtalic is also developing Xtalium, a nanostructured aluminum alloy, to help improve range and performance in the electric vehicle market. This durable, corrosion-resistant coating enables the use of low-cost, lightweight magnesium alloy for automotive components.

The magnesium parts weigh less than aluminum, and when coated with Xtalium alloy, they have substantial corrosion protection. In addition, Xtalium increases the corrosion resistance and performance of rare earth magnets.

© 2017-2018 New Mobility. All rights reserved. | Privacy Policy